Stochastic Nested Aggregation for Images and Random Fields
نویسنده
چکیده
Image segmentation is a critical step in building a computer vision algorithm that is able to distinguish between separate objects in an image scene. Image segmentation is based on two fundamentally intertwined components: pixel comparison and pixel grouping. In the pixel comparison step, pixels are determined to be similar or different from each other. In pixel grouping, those pixels which are similar are grouped together to form meaningful regions which can later be processed. This thesis makes original contributions to both of those areas. First, given a Markov Random Field framework, a Stochastic Nested Aggregation (SNA) framework for pixel and region grouping is presented and thoroughly analyzed using a Potts model. This framework is applicable in general to graph partitioning and discrete estimation problems where pairwise energy models are used. Nested aggregation reduces the computational complexity of stochastic algorithms such as Simulated Annealing to order O(N) while at the same time allowing local deterministic approaches such as Iterated Conditional Modes to escape most local minima in order to become a global deterministic optimization method. SNA is further enhanced by the introduction of a Graduated Models strategy which allows an optimization algorithm to converge to the model via several intermediary models. A well-known special case of Graduated Models is the Highest Confidence First algorithm which merges pixels or regions that give the highest global energy decrease. Finally, SNA allows us to use different models at different levels of coarseness. For coarser levels, a mean-based Potts model is introduced in order to compute region-to-region gradients based on the region mean and not edge gradients. Second, we develop a probabilistic framework based on hypothesis testing in order to achieve color constancy in image segmentation. We develop three new shading invariant semi-metrics based on the Dichromatic Reflection Model. An RGB image is transformed into an RGB highlight invariant space to remove any highlight components, and only the component representing color hue is preserved to remove shading effects. This transformation is applied successfully to one of the proposed distance measures. The probabilistic semi-metrics show similar performance to vector angle on images without saturated highlight pixels; however, for saturated regions, as well as very low intensity pixels, the probabilistic distance measures outperform vector angle.
منابع مشابه
Node Aggregation in Stochastic Nested Benders Decomposition Applied to Hydrothermal Coordination
This paper presents a multistage stochastic linear programming problem solved by a stochastic nested Benders decomposition algorithm. The algorithm allows the node aggregation and division of the scenario tree into connected subtrees forming arbitrary subproblems that will be solved as the algorithm proceeds. Different aggregation strategies have been tested and numerical results of the applica...
متن کاملStochastic processes that generate polygonal and related random fields
A reversible, ergodic, Markov process taking values in the space of polygonally segmented images is constructed. The stationary distribution of this process can be made to correspond to a Gibbs-type distribution for polygonal random fields introduced by Arak and Surgailis and a few variants thereof, such as those arising in Bayesian analysis of such random fields. Extensions to generalized poly...
متن کاملSpatial Information Retrieval from Remote-Sensing Images—Part II: Gibbs–Markov Random Fields
We present Gibbs–Markov random field (GMRF) models as a powerful and robust descriptor of spatial information in typical remote-sensing image data. This class of stochastic image models provides an intuitive description of the image data using parameters of an energy function. For the selection among several nested models and the fit of the model, we proceed in two steps of Bayesian inference. ...
متن کاملSpatial information retrieval from remote-sensing images. II. Gibbs-Markov random fields
We present Gibbs–Markov random field (GMRF) models as a powerful and robust descriptor of spatial information in typical remote-sensing image data. This class of stochastic image models provides an intuitive description of the image data using parameters of an energy function. For the selection among several nested models and the fit of the model, we proceed in two steps of Bayesian inference. ...
متن کاملSpatial Information Retrieval from Remote Sensing Images: Part B. Gibbs Markov Random Fields
| We present Gibbs Markov random eld models as a powerful and robust descriptor of spatial information in typical remote sensing image data. This class of stochastic image models provides an intuitive description of the image data using parameters of an energy function. For the selection among several nested models and the t of the model we proceed in two steps of Bayesian inference. This proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007